Product Search


Immersions Of Pants Into A Fixed Hyperbolic Surface


Exploiting a relationship between closed geodesics on a generic closed hyperbolic surface Sݑ†Sitalic_S and a certain unipotent flow on the product space T1(S)×T1(S)subscriptݑ‡1ݑ†subscriptݑ‡1ݑ†T_1(S)\times T_1(S)italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ) × italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ), we obtain a local asymptotic equidistribution result for long closed geodesics on Sݑ†Sitalic_S. Applications include asymptotic estimates for the number of pants immersions into Sݑ†Sitalic_S satisfying various geometric constraints. Also we show that two closed geodesics γ1,γ2subscriptݛ¾1subscriptݛ¾2\gamma_1,\gamma_2italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of length close to Lݐ¿Litalic_L chosen uniformly at random have a high probability of partially bounding an immersed 4444-holed sphere whose other boundary components also have length close to Lݐ¿Litalic_L.

MSC: 20E09, 20F69, 37E35, 51M10 Keywords: hyperbolic surface, pants, surface subgroup, subgroup growth, equidistribution.

One motivation for this work came from two well-known conjectures:

Conjecture 1.1.

(The Surface Subgroup Conjecture) Let ℳℳ\cal Mcaligraphic_M be a closed hyperbolic 3333-manifold. Then there exists a π1subscriptݜ‹1\pi_1italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-injective map j:S→ℳnormal-:ݑ—normal-→ݑ†ℳj:S\to\cal Mitalic_j : italic_S → caligraphic_M from a closed surface Sݑ†Sitalic_S of genus at least 2 into ℳℳ\cal Mcaligraphic_M.

Conjecture 1.2.

(The hyperbolic Ehrenpreis conjecture)([Ehrenpreis],[Gendron]) Let ϵ>0italic-ϵ0\epsilon>0italic_ϵ >0 and let S1,S2subscriptݑ†1subscriptݑ†2S_1,S_2italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two closed hyperbolic surfaces. Then there exists finite-sheeted locally isometric covers S~isubscriptnormal-~ݑ†ݑ–\tildeS_iover~ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT of Sisubscriptݑ†ݑ–S_iitalic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (for i=1,2ݑ–12i=1,2italic_i = 1 , 2) such that there is a (1+ϵ)1italic-ϵ(1+\epsilon)( 1 + italic_ϵ ) bi-Lipschitz homeomorphism between S~1subscriptnormal-~ݑ†1\tildeS_1over~ start_ARG italic_S end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and S~2subscriptnormal-~ݑ†2\tildeS_2over~ start_ARG italic_S end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Attempting to understand these conjectures led to the study of immersions of three-holed spheres into 3333-manifolds ℳℳ\cal Mcaligraphic_M and cross products S1×S2subscriptݑ†1subscriptݑ†2S_1\times S_2italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT; we would like to glue such immersions together to obtain an immersion of a closed surface S→ℳ→ݑ†ℳS\to\cal Mitalic_S → caligraphic_M or S→S1×S2→ݑ†subscriptݑ†1subscriptݑ†2S\to S_1\times S_2italic_S → italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with tight control on its geometric structure.

But the simpler case, that of immersions of three-holed spheres into a closed hyperbolic surface Sݑ†Sitalic_S, is not well-understood. For instance, the following question is unknown.

Question 1.3.

Given ϵ>0italic-ϵ0\epsilon>0italic_ϵ >0, for sufficiently large Lݐ¿Litalic_L, does there exist a finite sheeted cover π:S~→Snormal-:ݜ‹normal-→normal-~ݑ†ݑ†\pi:\tildeS\to Sitalic_π : over~ start_ARG italic_S end_ARG → italic_S such that S~normal-~ݑ†\tildeSover~ start_ARG italic_S end_ARG admits a pair of pants decomposition, every geodesic of which has length in (L-ϵ,L+ϵ)ݐ¿italic-ϵݐ¿italic-ϵ(L-\epsilon,L+\epsilon)( italic_L - italic_ϵ , italic_L + italic_ϵ )?

Another motivation for the present work comes from a desire to “bridge the gap” between two research areas: group growth and subgroup growth. The former concerns itself with the asymptotic number of elements in a given group of word length less than Rݑ…Ritalic_R, the latter with the asymptotic number of subgroups with finite index less than Rݑ…Ritalic_R. Is there something in between? Among other things, here we study the asymptotic number of conjugacy classes of 2-generator subgroups of a surface group satisfying certain geometric conditions with the aim (not yet realized) of amalgamating these subgroups together to obtain finite index subgroups with geometric constraints.

1.1 Equidistibution Results

Let Sݑ†Sitalic_S be a fixed closed hyperbolic surface. Regard Sݑ†Sitalic_S as the quotient space ℍ2/Γsuperscriptℍ2Γ\mathbbH^2/\Gammablackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / roman_Γ where ΓΓ\Gammaroman_Γ is a fixed lattice in the group Isom+(ℍ2)ݐ¼ݑ ݑœsuperscriptݑšsuperscriptℍ2Isom^{+}(\mathbbH^2)italic_I italic_s italic_o italic_m start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (=PSL2(ℝ))absentݑƒݑ†subscriptݐ¿2ℝ(=PSL_2(\mathbbR))( = italic_P italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R ) ) of all orientation-preserving isometries of the hyperbolic plane ℍ2superscriptℍ2\mathbbH^2blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

Let wݑ¤witalic_w be an arbitrary unit vector in the unit tangle bundle T1(S)subscriptݑ‡1ݑ†T_1(S)italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ). Consider the geodesic segment of length Lݐ¿Litalic_L tangent to wݑ¤witalic_w with wݑ¤witalic_w based at its midpoint. If the tangent vectors e1,e2subscriptݑ’1subscriptݑ’2e_1,e_2italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT at the endpoints are close then a short segment can be adjoined to it to obtain a closed path in Sݑ†Sitalic_S. The closed geodesic γݛ¾\gammaitalic_γ in the homotopy class of this path is very close to the original segment. A calculation we will use often quantifies how close. For example, we show that there is a function F=(F1,F2,F3)ݐ¹subscriptݐ¹1subscriptݐ¹2subscriptݐ¹3F=(F_1,F_2,F_3)italic_F = ( italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_F start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) of the position of e1subscriptݑ’1e_1italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT relative to e2subscriptݑ’2e_2italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that the distance from wݑ¤witalic_w to γݛ¾\gammaitalic_γ along a geodesic segment orthogonal to wݑ¤witalic_w equals F1e-L/2+O(e-L)subscriptݐ¹1superscriptݑ’ݐ¿2ݑ‚superscriptݑ’ݐ¿F_1e^-L/2+O(e^-L)italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_L / 2 end_POSTSUPERSCRIPT + italic_O ( italic_e start_POSTSUPERSCRIPT - italic_L end_POSTSUPERSCRIPT ), the angle at which this segment intersects γݛ¾\gammaitalic_γ equals π/2+F2e-L/2+O(e-L)ݜ‹2subscriptݐ¹2superscriptݑ’ݐ¿2ݑ‚superscriptݑ’ݐ¿\pi/2+F_2e^-L/2+O(e^-L)italic_π / 2 + italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_L / 2 end_POSTSUPERSCRIPT + italic_O ( italic_e start_POSTSUPERSCRIPT - italic_L end_POSTSUPERSCRIPT ) and the length of γݛ¾\gammaitalic_γ equals L+F3+O(e-L)ݐ¿subscriptݐ¹3ݑ‚superscriptݑ’ݐ¿L+F_3+O(e^-L)italic_L + italic_F start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_O ( italic_e start_POSTSUPERSCRIPT - italic_L end_POSTSUPERSCRIPT ). Roughly speaking, if the distance between e1subscriptݑ’1e_1italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and e2subscriptݑ’2e_2italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is less than ϵitalic-ϵ\epsilonitalic_ϵ then |F1|,|F2|,|F3|subscriptݐ¹1subscriptݐ¹2subscriptݐ¹3|F_1|,|F_2|,|F_3|| italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | , | italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | , | italic_F start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT | are all less than ϵitalic-ϵ\epsilonitalic_ϵ as well. For a precise statement see corollaries 3.4 and 4.2 below.

If the vectors e1subscriptݑ’1e_1italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and e2subscriptݑ’2e_2italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are not close then we push wݑ¤witalic_w to its right along an orthogonal geodesic. The pair (e1,e2)subscriptݑ’1subscriptݑ’2(e_1,e_2)( italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) moves by a product of hypercycle flows in the product space T1(S)×T1(S)subscriptݑ‡1ݑ†subscriptݑ‡1ݑ†T_1(S)\times T_1(S)italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ) × italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ). Pushing wݑ¤witalic_w a distance O(e-L/2)ݑ‚superscriptݑ’ݐ¿2O(e^-L/2)italic_O ( italic_e start_POSTSUPERSCRIPT - italic_L / 2 end_POSTSUPERSCRIPT ) amounts to flowing this pair for O(1)ݑ‚1O(1)italic_O ( 1 ) time. As Lݐ¿Litalic_L tends to infinity, this product hypercycle flow converges to a product of horocycle flows. As a consequence of Ratner’s work on Raghunathan’s conjectures we show that if the commensurator, Comm(Γ)ݐ¶ݑœݑšݑšΓComm(\Gamma)italic_C italic_o italic_m italic_m ( roman_Γ ), contains only orientation preserving isometries then the latter flow is uniformly equidistributed on the product space. By definition, Comm(Γ)ݐ¶ݑœݑšݑšΓComm(\Gamma)italic_C italic_o italic_m italic_m ( roman_Γ ) is the set of all isometries g∈Isom(ℍ2)ݑ”ݐ¼ݑ ݑœݑšsuperscriptℍ2g\in Isom(\mathbbH^2)italic_g ∈ italic_I italic_s italic_o italic_m ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) such that gΓg-1∩Γݑ”Γsuperscriptݑ”1Γg\Gamma g^-1\cap\Gammaitalic_g roman_Γ italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∩ roman_Γ has finite index in ΓΓ\Gammaroman_Γ.

To make this precise, for w∈T1(ℍ2)ݑ¤subscriptݑ‡1superscriptℍ2w\in T_1(\mathbbH^2)italic_w ∈ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), T,L>0ݑ‡ݐ¿0T,L>0italic_T , italic_L >0, let μ=μw,T,Lݜ‡subscriptݜ‡ݑ¤ݑ‡ݐ¿\mu=\mu_w,T,Litalic_μ = italic_μ start_POSTSUBSCRIPT italic_w , italic_T , italic_L end_POSTSUBSCRIPT be the probability measure on the set

0≤t≤Te-L/2conditional-setsubscriptݑ¤ݑ¡subscriptݐºݐ¿2subscriptݑ¤ݑ¡subscriptݐºݐ¿2subscriptݑ‡1superscriptℍ2subscriptݑ‡1superscriptℍ2 0ݑ¡ݑ‡superscriptݑ’ݐ¿2\displaystyle\big\{}(w_tG_-L/2,w_tG_L/2)\in T_1(\mathbbH^2)% \times T_1(\mathbbH^2)\,\big\,0\leq t\leq Te^-L/2\big{\} ( italic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT - italic_L / 2 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_L / 2 end_POSTSUBSCRIPT ) ∈ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) × italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )
induced by Lebesgue measure on [0,Te-L/2]0ݑ‡superscriptݑ’ݐ¿2[0,Te^-L/2][ 0 , italic_T italic_e start_POSTSUPERSCRIPT - italic_L / 2 end_POSTSUPERSCRIPT ]. Here wtsubscriptݑ¤ݑ¡w_titalic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is the unit vector obtained by pushing wݑ¤witalic_w to its right along an orthogonal geodesic for time tݑ¡titalic_t at unit speed. GLsubscriptݐºݐ¿G_Litalic_G start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT is the geodesic flow for time Lݐ¿Litalic_L. So if σtsubscriptݜŽݑ¡\sigma_titalic_σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is the segment of length Lݐ¿Litalic_L tangent to wtsubscriptݑ¤ݑ¡w_titalic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT with wtsubscriptݑ¤ݑ¡w_titalic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT based at its midpoint, then wtG-L/2subscriptݑ¤ݑ¡subscriptݐºݐ¿2w_tG_-L/2italic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT - italic_L / 2 end_POSTSUBSCRIPT and wtGL/2subscriptݑ¤ݑ¡subscriptݐºݐ¿2w_tG_L/2italic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT italic_L / 2 end_POSTSUBSCRIPT are the unit vectors tangent to σtsubscriptݜŽݑ¡\sigma_titalic_σ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT at its ends and oriented consistently with wtsubscriptݑ¤ݑ¡w_titalic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT. Let π*(μw,T,L)subscriptݜ‹subscriptݜ‡ݑ¤ݑ‡ݐ¿\pi_{*}(\mu_w,T,L)italic_π start_POSTSUBSCRIPT * end_POSTSUBSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_w , italic_T , italic_L end_POSTSUBSCRIPT ) be the projection of μw,T,Lsubscriptݜ‡ݑ¤ݑ‡ݐ¿\mu_w,T,Litalic_μ start_POSTSUBSCRIPT italic_w , italic_T , italic_L end_POSTSUBSCRIPT to T1(S)×T1(S)subscriptݑ‡1ݑ†subscriptݑ‡1ݑ†T_1(S)\times T_1(S)italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ) × italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ).

Theorem 1.4.

Assume Comm(Γ)0subscriptitalic-ϵ00\epsilon_0>0italic_ϵ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT >0 there exists a T0>0subscriptݑ‡00T_0>0italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT >0 such that for all T,L>T0ݑ‡ݐ¿subscriptݑ‡0T,L>T_0italic_T , italic_L >italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and w∈T1(ℍ2)ݑ¤subscriptݑ‡1superscriptℍ2w\in T_1(\mathbbH^2)italic_w ∈ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )

|π*(μw,T,L)(f)-λ×λ(f)|<ϵ0.subscriptݜ‹subscriptݜ‡ݑ¤ݑ‡ݐ¿ݑ“ݜ†ݜ†ݑ“subscriptitalic-ϵ0\displaystyle|\pi_{*}(\mu_w,T,L)(f)-\lambda\times\lambda(f)|| italic_π start_POSTSUBSCRIPT * end_POSTSUBSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_w , italic_T , italic_L end_POSTSUBSCRIPT ) ( italic_f ) - italic_λ × italic_λ ( italic_f ) |
The condition Comm(Γ)
To give a sample of what can be obtained, for l1
Theorem 1.5.

Assume Comm(Γ)0subscriptsubscriptݜŽݐ¿ݐ¿0\\sigma_L\_L>0 italic_σ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_L >0 end_POSTSUBSCRIPT be a sequence of oriented geodesic segments σL⊂SsubscriptݜŽݐ¿ݑ†\sigma_L\subset Sitalic_σ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ⊂ italic_S. Assume length(σL)eL/2→∞normal-→ݑ™ݑ’ݑ›ݑ”ݑ¡ℎsubscriptݜŽݐ¿superscriptݑ’ݐ¿2length(\sigma_L)e^L/2\to\inftyitalic_l italic_e italic_n italic_g italic_t italic_h ( italic_σ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) italic_e start_POSTSUPERSCRIPT italic_L / 2 end_POSTSUPERSCRIPT → ∞ as L→∞normal-→ݐ¿L\to\inftyitalic_L → ∞. Let (l1,l1),(a1,a2)subscriptݑ™1subscriptݑ™1subscriptݑŽ1subscriptݑŽ2(l_1,l_1),(a_1,a_2)( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) be finite intervals of the real line. Let NL=NL(a1,a2,l1,l2)subscriptݑݐ¿subscriptݑݐ¿subscriptݑŽ1subscriptݑŽ2subscriptݑ™1subscriptݑ™2N_L=N_L(a_1,a_2,l_1,l_2)italic_N start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) be the set of unit vectors vݑ£vitalic_v such that

•
the basepoint of vݑ£vitalic_v is in σLsubscriptݜŽݐ¿\sigma_Litalic_σ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT,

•
vݑ£vitalic_v is tangent to a closed geodesic γ∈ݒ¢L(l1,l2)ݛ¾subscriptݒ¢ݐ¿subscriptݑ™1subscriptݑ™2\gamma\in\cal G_L(l_1,l_2)italic_γ ∈ caligraphic_G start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ),

•
vݑ£vitalic_v is oriented consistently with γݛ¾\gammaitalic_γ,

•
the angle from vݑ£vitalic_v to σLsubscriptݜŽݐ¿\sigma_Litalic_σ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT is in the interval π/2+(a1,a2)e-L/2ݜ‹2subscriptݑŽ1subscriptݑŽ2superscriptݑ’ݐ¿2\pi/2+(a_1,a_2)e^-L/2italic_π / 2 + ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_e start_POSTSUPERSCRIPT - italic_L / 2 end_POSTSUPERSCRIPT.

Then

#NL∼length(σL)vol(T1(S))(a2-a1)(el2-el1)eL/2.similar-to#subscriptݑݐ¿ݑ™ݑ’ݑ›ݑ”ݑ¡ℎsubscriptݜŽݐ¿ݑ£ݑœݑ™subscriptݑ‡1ݑ†subscriptݑŽ2subscriptݑŽ1superscriptݑ’subscriptݑ™2superscriptݑ’subscriptݑ™1superscriptݑ’ݐ¿2\displaystyle\#N_L\sim\fraclength(\sigma_L)vol(T_1(S))(a_2-a_1)(% e^l_2-e^l_1)e^L/2.# italic_N start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ∼ divide start_ARG italic_l italic_e italic_n italic_g italic_t italic_h ( italic_σ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) end_ARG start_ARG italic_v italic_o italic_l ( italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ) ) end_ARG ( italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( italic_e start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) italic_e start_POSTSUPERSCRIPT italic_L / 2 end_POSTSUPERSCRIPT .

Here and throughout the paper, F∼Gsimilar-toݐ¹ݐºF\sim Gitalic_F ∼ italic_G means limL→∞FG=1subscript→ݐ¿ݐ¹ݐº1\lim_L\to\infty\fracFG=1roman_lim start_POSTSUBSCRIPT italic_L → ∞ end_POSTSUBSCRIPT divide start_ARG italic_F end_ARG start_ARG italic_G end_ARG = 1. vol(T1(S))ݑ£ݑœݑ™subscriptݑ‡1ݑ†vol(T_1(S))italic_v italic_o italic_l ( italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ) ) equals 2πarea(S)=(2π)2(2genus(S)-2)2ݜ‹ݑŽݑŸݑ’ݑŽݑ†superscript2ݜ‹22ݑ”ݑ’ݑ›ݑ¢ݑ ݑ†22\pi area(S)=(2\pi)^2(2genus(S)-2)2 italic_π italic_a italic_r italic_e italic_a ( italic_S ) = ( 2 italic_π ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 2 italic_g italic_e italic_n italic_u italic_s ( italic_S ) - 2 ). We also give a new proof of a special case of Rufus Bowen’s equidistribution theorem (see theorem 3.6).

1.2 Counting Pants Immersions

We use the theorems above to build and count pants immersions into Sݑ†Sitalic_S by constructing generators for the image subgroup corresponding to two of the boundary components. To state the results, fix ϵ>0italic-ϵ0\epsilon>0italic_ϵ >0. For r1,r2,r3,L>0subscriptݑŸ1subscriptݑŸ2subscriptݑŸ3ݐ¿0r_1,r_2,r_3,L>0italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_L >0 let ݒ«L(r1,r2,r3)subscriptݒ«ݐ¿subscriptݑŸ1subscriptݑŸ2subscriptݑŸ3\cal P_L(r_1,r_2,r_3)caligraphic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) be the set of all locally isometric orientation-preserving immersions j:P→S:ݑ—→ݑƒݑ†j:P\to Sitalic_j : italic_P → italic_S in which PݑƒPitalic_P is a hyperbolic three-holed sphere (i.e. a pair of pants) with geodesic boundary components of length l1,l2,l3subscriptݑ™1subscriptݑ™2subscriptݑ™3l_1,l_2,l_3italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT satisfying

li∈riL+(-ϵ,ϵ)subscriptݑ™ݑ–subscriptݑŸݑ–ݐ¿italic-ϵitalic-ϵ\displaystyle l_i\in r_iL+(-\epsilon,\epsilon)italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_L + ( - italic_ϵ , italic_ϵ )
for i=1,2,3ݑ–123i=1,2,3italic_i = 1 , 2 , 3. We implicitly identify immersions j1:P1→S:subscriptݑ—1→subscriptݑƒ1ݑ†j_1:P_1\to Sitalic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT → italic_S and j2:P2→S:subscriptݑ—2→subscriptݑƒ2ݑ†j_2:P_2\to Sitalic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT → italic_S if there is an isometry Ψ:P1→P2:Ψ→subscriptݑƒ1subscriptݑƒ2\Psi:P_1\to P_2roman_Ψ : italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT → italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that j1=j2∘Ψsubscriptݑ—1subscriptݑ—2Ψj_1=j_2\circ\Psiitalic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∘ roman_Ψ. Thus ݒ«L(r1,r2,r3)subscriptݒ«ݐ¿subscriptݑŸ1subscriptݑŸ2subscriptݑŸ3\cal P_L(r_1,r_2,r_3)caligraphic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) is a finite set. The first result gives asymptotics for the cardinality ݒ«L(r1,r2,r3)subscriptݒ«ݐ¿subscriptݑŸ1subscriptݑŸ2subscriptݑŸ3\cal P_L(r_1,r_2,r_3)caligraphic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ).

Corollary 1.6.

Assume Comm(Γ)
|ݒ«L(r1,r2,r3)|∼8(eϵ/2-e-ϵ/2)3vol(T1(S))|Isom+(r1,r2,r3)|e(r1+r2+r3)L/2similar-tosubscriptݒ«ݐ¿subscriptݑŸ1subscriptݑŸ2subscriptݑŸ38superscriptsuperscriptݑ’italic-ϵ2superscriptݑ’italic-ϵ23ݑ£ݑœݑ™subscriptݑ‡1ݑ†ݐ¼ݑ ݑœsuperscriptݑšsubscriptݑŸ1subscriptݑŸ2subscriptݑŸ3superscriptݑ’subscriptݑŸ1subscriptݑŸ2subscriptݑŸ3ݐ¿2\displaystyle|\cal P_L(r_1,r_2,r_3)|\sim\frac8(e^\epsilon/2-e^-% \epsilon/2)^3vol(T_1(S))e^(r_1+r_2+r% _3)L/2| caligraphic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) | ∼ divide start_ARG 8 ( italic_e start_POSTSUPERSCRIPT italic_ϵ / 2 end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_ϵ / 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_v italic_o italic_l ( italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_S ) ) | italic_I italic_s italic_o italic_m start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) | end_ARG italic_e start_POSTSUPERSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) italic_L / 2 end_POSTSUPERSCRIPT
where Isom+(r1,r2,r3)ݐ¼ݑ ݑœsuperscriptݑšsubscriptݑŸ1subscriptݑŸ2subscriptݑŸ3Isom^{+}(r_1,r_2,r_3)italic_I italic_s italic_o italic_m start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) is the orientation-preserving isometry group of the pair of pants with boundary lengths r1,r2,r3subscriptݑŸ1subscriptݑŸ2subscriptݑŸ3r_1,r_2,r_3italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT.

For comparison, recall that the number of closed oriented geodesics in Sݑ†Sitalic_S with length in (L-ϵ,L+ϵ)ݐ¿italic-ϵݐ¿italic-ϵ(L-\epsilon,L+\epsilon)( italic_L - italic_ϵ , italic_L + italic_ϵ ) is asymptotic to (eϵ-e-ϵ)eL/Lsuperscriptݑ’italic-ϵsuperscriptݑ’italic-ϵsuperscriptݑ’ݐ¿ݐ¿(e^\epsilon-e^-\epsilon)e^L/L( italic_e start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_ϵ end_POSTSUPERSCRIPT ) italic_e start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT / italic_L (see e.g. [Buser]). Unlike |ݒ«L(r1,r2,r3)|subscriptݒ«ݐ¿subscriptݑŸ1subscriptݑŸ2subscriptݑŸ3|\cal P_L(r_1,r_2,r_3)|| caligraphic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) | it does not depend on the genus of the surface.

We will prove this as a corollary to theorem 1.7 below. Recall that a closed oriented geodesic γݛ¾\gammaitalic_γ, is a local isometry γ:S1→S:ݛ¾→superscriptݑ†1ݑ†\gamma:S^1\to Sitalic_γ : italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT → italic_S from the circle of length length(γ)ݑ™ݑ’ݑ›ݑ”ݑ¡ℎݛ¾length(\gamma)italic_l italic_e italic_n italic_g italic_t italic_h ( italic_γ ) to Sݑ†Sitalic_S. We identify geodesics γ1,γ2subscriptݛ¾1subscriptݛ¾2\gamma_1,\gamma_2italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT if there is an orientation-preserving isometry Ψ:S1→S1:Ψ→superscriptݑ†1superscriptݑ†1\Psi:S^1\to S^1roman_Ψ : italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT → italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT such that γ1=γ2∘Ψsubscriptݛ¾1subscriptݛ¾2Ψ\gamma_1=\gamma_2\circ\Psiitalic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∘ roman_Ψ. Let γ¯¯ݛ¾\bar\gammaover¯ start_ARG italic_γ end_ARG denote the image of γݛ¾\gammaitalic_γ so length(γ¯)=length(γ)/mݑ™ݑ’ݑ›ݑ”ݑ¡ℎ¯ݛ¾ݑ™ݑ’ݑ›ݑ”ݑ¡ℎݛ¾ݑšlength(\bar\gamma)=length(\gamma)/mitalic_l italic_e italic_n italic_g italic_t italic_h ( over¯ start_ARG italic_γ end_ARG ) = italic_l italic_e italic_n italic_g italic_t italic_h ( italic_γ ) / italic_m where the map γ:S1→γ¯:ݛ¾→superscriptݑ†1¯ݛ¾\gamma:S^1\to\bar\gammaitalic_γ : italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT → over¯ start_ARG italic_γ end_ARG is an mݑšmitalic_m-fold cover.

For γ∈ݒ¢r1L=ݒ¢r1L(-ϵ,ϵ)ݛ¾subscriptݒ¢subscriptݑŸ1ݐ¿subscriptݒ¢subscriptݑŸ1ݐ¿italic-ϵitalic-ϵ\gamma\in\cal G_r_1L=\cal G_r_1L(-\epsilon,\epsilon)italic_γ ∈ caligraphic_G start_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = caligraphic_G start_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( - italic_ϵ , italic_ϵ ), let ݒ«L(r1,r2,r3;γ)⊂ݒ«L(r1,r2,r3)subscriptݒ«ݐ¿subscriptݑŸ1subscriptݑŸ2subscriptݑŸ3ݛ¾subscriptݒ«ݐ¿subscriptݑŸ1subscriptݑŸ2subscriptݑŸ3\cal P_L(r_1,r_2,r_3;\gamma)\subset\cal P_L(r_1,r_2,r_3)caligraphic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ; italic_γ ) ⊂ caligraphic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) denote the subset of immersions (j:P→S):ݑ—→ݑƒݑ†(j:P\to S)( italic_j : italic_P → italic_S ) in which jݑ—jitalic_j restricted to some boundary component is equivalent to γݛ¾\gammaitalic_γ.

Theorem 1.7.

Assume Comm(Γ)r1subscriptݑŸ2subscriptݑŸ3subscriptݑŸ1r_2+r_3>r_1italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT >italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and r1+r3>r2subscriptݑŸ1subscriptݑŸ3subscriptݑŸ2r_1+r_3>r_2italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT >italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT then

|ݒ«L(r1,r2,r3;γL)|∼4(eϵ/2-e-ϵ/2)2vol(T1(S))nlength(γ¯L)exp(-length(γL)/2+r2L/2+r3L/2)similar-tosubscriptݒ«ݐ¿subscriptݑŸ1subscriptݑŸ2subscriptݑŸ3subscriptݛ¾ݐ¿4superscriptsuperscriptݑ’italic-ϵ2superscriptݑ’italic-ϵ22ݑ£ݑœݑ™subscriptݑ‡1ݑ†ݑ›ݑ™ݑ’ݑ›ݑ”ݑ¡ℎsubscript¯ݛ¾ݐ¿ݑ™ݑ’ݑ›ݑ”ݑ¡ℎsubscri


Featured Products






Articles


Discover The Advantages Of Dell Computers
Uk Fitness Equipment Weider Pro Home System Multi Gym Offers Almost All Body Building Exercise
Can Opt In Lists Help You
Discount Sofas For Small Spaces
How To Buy A Car Privately
Reasons You Actually Need To Acquire New Xbox For Xmas Gift
Reclaim Unused Spaces With Functional Guest Beds
The Spring Lawn Care
Understand Computers
6 Must Have Skills To Develop A Good Website
Lawn Care Services
How Famous Are Car Games
Must Know Facts About Low Profile Tires
Why Microwave Cooking Is Becoming More Popular
Fashion for Women over 50
Option To Offer Statues For Sales To A Larger Group Of Potential Customers
Should You Wear Sneakers For A Casual Day At The Office
When You Blow Into A Clarinet
Step By Step Guide To Decorate The Bookshelf Like A Pro
Why should you buy Football Shorts from a Genuine Brand?
Relieving Stress With The Desktop Destroyer Game
Three Reasons Why Buying In Bulk At Miraclemarts Is A Good Idea
Exhausting Pants Graphs Of Punctured Spheres By Finite Rigid Sets
4 Common Misconceptions about House Cleaning Services
Backpacks Rucksacks
Capezza Dave Operations Director Homebase Usa
The Benefits You Can Get From Lawn Mower Reviews
Ipl 211 Deccan Chargers To Play Against Royal Challengers In Hyderabad Tonight
The Dog Bark Collars Are Instrumental To Cease Your Pet From Consistent Barking
Lights Out Campaign Urges Texans To Dim Night Lights To Help Migrating Birds
Separating From A Narcissistic Husband How To Leave A Narcissist Marriage
Butterfly Table Tennis Equipment Supplier
Discount Throw Pillows Produced By A Well Brought Up Corporation
Re Sports Inc Coupons Re Sports Inc Coupon Codes
Kids Headphones Everything You Should Know
Get New iPhone 3G Themes
Examples Mongodb Cassandra Scylladb Couchdb Redis
Top Tips For Traveling With Pets
Download Wii Sports Resort Nintendo Wii Game
Understanding The Benefits Of Buying Kitchen Utensils Online
The Best Toaster Oven Regular Or Convection
Beepi Dealerpinch
Car Stereo Systems Include Kicker Subwoofers and MTX Audio Equipment
Louis Vuitton Monogram Canvas For Long Lasting Bags
What You Have To Be Aware Regarding Backpacking Backpacks
Review On Used Cars In Mumbai City
How To Choos The Right Floor Lamps For You
Hubbardton Forge Floor Lamps Perfect For Adding Up The Indoor Splendor
Dump Trucks Only Dumps Utility
Few Exciting Racing Games For Iphones