You can talk to almost anyone, in any corner of the world, almost instantly because of the Internet and other advances in electronic communication. Scientists and space explorers now are looking for a way to communicate almost instantly beyond Earth. The next phase of the Internet will take us to far reaches of our solar system, and lay the groundwork for a communications system for a manned missions to Mars and planets beyond. If we ever want to find out more about other planets, we will need a better communication system for future space missions. Today, communication in space moves at a snail's pace compared to communication on Earth. As you move farther out into space, however, there is a delay of minutes or hours because light has to travel millions of miles, instead of thousands of miles, between transmitter and receiver. Line of sight obstruction -- Anything that blocks the space between the signal transmitter and receiver can interrupt communication.
Weight -- High-powered antennas that would improve communication with deep space probes are often too heavy to send on a space mission, because the payload must be light and efficiently used. There's a good chance that humans will travel to Mars before we see the beginning of a new century. How will we communicate with these distant travelers? Scientists, engineers and programmers are already working to develop an interplanetary Internet that will connect us to probes and human space travelers, and allow more information to be sent back to Earth. If you've ever wanted to travel into space, then this edition of How Stuff Will Work will show you how the interplanetary Internet will enable anyone to travel into space -- the way the Internet allows us to visit foreign lands without leaving our desks -- and what technologies will support such an astronomical communications system. Data from the Pathfinder trickled back at an average rate of about 300 bits per second during its mission.
Most likely, your computer can transfer data at least 200 times faster than that. An Internet between Mars and Earth would likely yield a data transfer rate of 11,000 bits per second. That is still much slower than your computer's transfer rate, but it would be enough to send back more detailed images of the Mars surface. Mars Network researchers think that the transfer rate could eventually go to about 1 Megabyte (8,288,608 bits) per second and allow anyone to take a virtual trip to Mars. An interplanetary Internet is like the Earth's Internet on a grand scale and with some improvements. A new protocol for transferring data. The DSN is the international network of antennas used by NASA to track data and control navigation of interplanetary spacecraft. It is designed to allow for continuous radio communication with the spacecraft. However, recent space missions have lost communication with the DSN, including the Mars Climate Orbiter and the Mars Polar Lander missions in 1999. There are three global facilities, in California, Australia and Spain, that make up the DSN.
Each facility is equipped with one 111-foot (34-meter) diameter high efficiency antenna, one 111-foot beam waveguide antenna (three in California), one 85-foot (26-meter) antenna, one 230-foot (70-meter) antenna and one 36-foot (11-meter) antenna. In an interplanetary Internet, the DSN will be the Earth's gateway or portal to that Internet. In a paper published by the MITRE Corp., a company that is financing the Interplanetary Internet Study, researchers suggest that the DSN's antennas could be pointed at Mars to connect Earth and Mars for at least 12 hours each day. Satellites orbiting Mars should provide a full-time connection between the two planets. A Martian rover, probe or human colony will provide a Mars portal to the interplanetary Internet. Under the Mars Network plan, the DSN will interact with a constellation of six microsatellites and one large Marsat satellite placed in low Mars orbit. These six microsats are relay satellites for spacecraft on or near the surface of the planet, and they will allow more data to come back from Mars missions.
|