The internet operates by breaking data into packets, which travel from the source server to your device through various network paths. Packets, containing parts of the data, are routed by internet service providers and domain name servers to find the most efficient path to their destination. Despite potential network congestion, the internet's design allows packets to route around disruptions, ensuring data still reaches its end point. Even though the Internet is still a young technology, it's hard to imagine life without it now. Every year, engineers create more devices to integrate with the Internet. This network of networks crisscrosses the globe and even extends into space. But what makes it work? To understand the Internet, it helps to look at it as a system with two main components. The first of those components is hardware. That includes everything from the cables that carry terabits of information every second to the computer sitting in front of you. All these devices together create the network of networks.
The Internet is a malleable system -- it changes in little ways as elements join and leave networks around the world. Some of those elements may stay fairly static and make up the backbone of the Internet. Others are more peripheral. These elements are connections. Some are end points -- the computer, smartphone or other device you're using to read this may count as one. We call those end points clients. Machines that store the information we seek on the Internet are servers. Other elements are nodes which serve as a connecting point along a route of traffic. And then there are the transmission lines which can be physical, as in the case of cables and fiber optics, or they can be wireless signals from satellites, cell phone or 4G towers, or radios. All of this hardware wouldn't create a network without the second component of the Internet: the protocols. Protocols are sets of rules that machines follow to complete tasks.
Without a common set of protocols that all machines connected to the Internet must follow, communication between devices couldn't happen. The various machines would be unable to understand one another or even send information in a meaningful way. The protocols provide both the method and a common language for machines to use to transmit data. We'll take a closer look at protocols and how information travels across the Internet on the next page. You've probably heard of several protocols on the Internet. For example, hypertext transfer protocol is what we use to view Web sites through a browser -- that's what the http at the front of any Web address stands for. If you've ever used an FTP server, you relied on the file transfer protocol. Protocols like these and dozens more create the framework within which all devices must operate to be part of the Internet. Two of the most important protocols are the transmission control protocol (TCP) and the Internet protocol (IP).
We often group the two together -- in most discussions about Internet protocols you'll see them listed as TCP/IP. At their most basic level, these protocols establish the rules for how information passes through the Internet. Without these rules, you would need direct connections to other computers to access the information they hold. You'd also need both your computer and the target computer to understand a common language. You've probably heard of IP addresses. These addresses follow the Internet protocol. Each device connected to the Internet has an IP address. This is how one machine can find another through the massive network. The version of IP most of us use today is IPv4, which is based on a 32-bit address system. There's one big problem with this system: We're running out of addresses. That's why the Internet Engineering Task Force (IETF) decided back in 1991 that it was necessary to develop a new version of IP to create enough addresses to meet demand.
The result was IPv6, a 128-bit address system. When you want to send a message or retrieve information from another computer, the TCP/IP protocols are what make the transmission possible. Your request goes out over the network, hitting domain name servers (DNS) along the way to find the target server. The DNS points the request in the right direction. Once the target server receives the request, it can send a response back to your computer. The data might travel a completely different path to get back to you. This flexible approach to data transfer is part of what makes the Internet such a powerful tool. Let's take a closer look at how information travels across the Internet. In order to retrieve this article, your computer had to connect with the Web server containing the article's file. We'll use that as an example of how data travels across the Internet. First, you open your Web browser and connect to our Web site.
|